Issue 10, 2020

Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces

Abstract

Adhesive hydrogels hold great promise in multiple biomedical applications. However, there still exist practical challenges in underwater specific adhesion of hydrogels to biotic surfaces. Inspired by ctenophores, we develop an exquisite design of adhesive hydrogel based on polyacrylic acid (PAA), chitosan, tannic acid (TA) and Al3+, where the inhibition of a high amount TA on gelation is eliminated. This kind of hydrogel has high toughness and fast self-healable capability both in air and underwater. With the aid of electrostatic interactions and dynamic catechol chemistry, it is capable of achieving high-efficiency, specific and reversible underwater adhesion to multiple biological tissues like porcine skin, muscle, liver, intestines, and shrimp or crab shells, in diverse aqueous environments. Furthermore, the hydrogel with excellent biocompatibility and antibacterial ability is also suitable for tissue repair. This ctenophore-inspired work opens new avenues for designing and fabricating high-performance hydrogels with efficient specific underwater adhesiveness to diverse biomaterials.

Graphical abstract: Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces

Supplementary files

Article information

Article type
Communication
Submitted
19 Aug 2020
Accepted
02 Sep 2020
First published
03 Sep 2020

Mater. Horiz., 2020,7, 2651-2661

Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces

X. Su, Y. Luo, Z. Tian, Z. Yuan, Y. Han, R. Dong, L. Xu, Y. Feng, X. Liu and J. Huang, Mater. Horiz., 2020, 7, 2651 DOI: 10.1039/D0MH01344G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements