A survey of non-coding RNAs in the social and predatory myxobacterium Myxococcus xanthus DK1622†
Abstract
Prokaryotic ncRNAs are important regulators of gene expression, and can be involved in complex signalling networks. The myxobacteria are model organisms for studies into multicellular development and microbial predation, being particularly renowned for their large genomes and exceptionally sophisticated signalling networks. However, apart from two specific examples, little is known about their regulatory ncRNAs. Here, we integrate bioinformatic predictions and transcriptome sequence data to provide a comprehensive survey of the ncRNAs made by the exemplar myxobacterium M. xanthus DK1622. M. xanthus RNA-seq data from four experimental conditions was interrogated to identify transcripts mapping outside coding sequences and to known ncRNAs. The resulting 37 ncRNAs were clustered on the genome and most (30/37) were conserved across the myxobacteria. A majority of ncRNAs (22/37) were intergenic, while 13 were at least partially antisense to protein-coding genes. Predicted promoter and terminator sequences explained the start/stop sites of 18 ncRNAs. mRNA targets for the ncRNAs were predicted, including plausible candidates for a known regulatory ncRNA. 22 ncRNAs were differentially expressed by nutrient availability and expression of 25 predicted targets was found to correlate strongly with that of their regulatory ncRNAs. Sharing of predicted mRNA targets by multiple ncRNAs suggests that some ncRNAs might regulate each other within signalling networks. This genomic survey of M. xanthus ncRNA biology provides a starting point for further studies of myxobacterial ncRNAs, which are likely to have important functions in these industrially important and sophisticated organisms.