Issue 11, 2020

Tailored viscoelasticity of a polymer cellular structure through nanoscale entanglement of carbon nanotubes

Abstract

A three-dimensional carbon nanotube (CNT) cellular structure presents a unique revelation of microstructure dependent mechanical and viscoelastic properties. Tailored CNT–CNT entanglement demonstrated a direct impact on both the strength and viscosity of the structure. Unlike traditional foams, an increase in the CNT–CNT entanglement progressively increases both the strength and the viscosity. The study reveals that an effective load is directly transferred within the structure through the short-range entanglements (nodes) resulting in an enhanced mechanical strength, whereas the long-range entanglements (bundles) regulate the energy absorption capacity. A three-dimensional structure of entangled CNT–CNT shows ∼15 and ∼26 times enhancement in the storage and loss moduli, respectively. The higher peak stress and energy loss are increased by ∼9.2 fold and ∼8.8 fold, respectively, compared to those of the cellular structures without entanglement. The study also revealed that the viscoelastic properties i.e. the Young's modulus, stress relaxation, strain rate sensitivity and fatigue properties can be modulated by tailoring the CNT–CNT entanglements within the cellular structure. A qualitative analysis is performed using finite element simulation to show the impact of CNT–CNT entanglements on the viscoelastic properties. The finding paves a way for designing a new class of meta-cellular materials which are viscous yet strong for shock absorbing or mechanical damping applications.

Graphical abstract: Tailored viscoelasticity of a polymer cellular structure through nanoscale entanglement of carbon nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2020
Accepted
21 Sep 2020
First published
21 Sep 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 5375-5383

Tailored viscoelasticity of a polymer cellular structure through nanoscale entanglement of carbon nanotubes

R. Ghosh and A. Misra, Nanoscale Adv., 2020, 2, 5375 DOI: 10.1039/D0NA00333F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements