The MgB2-catalyzed growth of boron nitride nanotubes using B/MgO as a boron containing precursor
Abstract
With the development of preparation technology, obtaining boron nitride nanotubes (BNNTs) is no longer difficult, but it is still not easy to balance the quality and purity of the obtained products using existing methods. In this work, we investigated a previously reported MgB2 catalyst to explore the synthesis of BNNTs at a higher temperature in a conventional chemical vapor deposition (CVD) system from a classic B/MgO precursor. Various characterization methods showed the high activity of MgB2 at 1400 °C and the superiority of the as-grown BNNTs in terms of purity and quality. Further reference experiments and element characterization measurements were also performed to verify the role of MgB2 in the growth of the BNNTs, finding that B/MgO/MgB2 is a simple and efficient precursor.