Issue 12, 2020

A graphene-sandwiched DNA nano-system: regulation of intercalated doxorubicin for cellular localization

Abstract

Control of the sub-cellular localization of nanoparticles (NPs) with enhanced drug-loading capacity, employing graphene oxide (GO), iron oxide (Fe3O4) NPs and sandwiched deoxyribonucleic acid (DNA) bearing intercalated anticancer drug doxorubicin (DOX) has been investigated in this work. The nanosystems G–DNA–DOX–Fe3O4 and Fe3O4–DNA–DOX differentially influence serum protein binding and deliver DOX to lysosomal compartments of cervical cancer (HeLa) cells with enhanced retention. Stern–Volmer plots describing BSA adsorption on the nanosystems demonstrated the quenching constants, Ksv for G–DNA–DOX–Fe3O4 and Fe3O4–DNA–DOX (0.025 mL μg−1 and 0.0103 mL μg−1 respectively). Nuclear DOX intensity, measured at 24 h, was ∼2.0 fold higher for Fe3O4–DNA–DOX in HeLa cells. Parallelly, the cytosol displayed ∼2.2 fold higher DOX intensity for Fe3O4–DNA–DOX compared to G–DNA–DOX–Fe3O4. Fe3O4–DNA–DOX was more efficacious in the cytotoxic effect than G–DNA–DOX–Fe3O4 (viability of treated cells: 33% and 49% respectively). The DNA:nanosystems demonstrated superior cytotoxicity compared to mole-equivalent free DOX administration. The results implicate DNA:DOX NPs in influencing the cellular uptake mechanism and were critically subject to cellular localization. Furthermore, cell morphology analysis evidenced maximum deformation attributed to free-DOX with 34% increased cell roundness, 63% decreased cell area and ∼1.9 times increased nuclear-to-cytoplasmic (N/C) ratio after 24 h. In the case of Fe3O4–DNA–DOX, the N/C ratio increased 1.2 times and a maximum ∼37% decrease in NSA was noted suggesting involvement of non-canonical cytotoxic pathways. In conclusion, the study makes a case for designing nanosystems with controlled and regulated sub-cellular localization to potentially exploit secondary cytotoxic pathways, in addition to optimized drug-loading for enhanced anticancer efficacy and reduced adverse effects.

Graphical abstract: A graphene-sandwiched DNA nano-system: regulation of intercalated doxorubicin for cellular localization

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2020
Accepted
05 Oct 2020
First published
05 Oct 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 5746-5759

A graphene-sandwiched DNA nano-system: regulation of intercalated doxorubicin for cellular localization

S. Nandi, N. Kale, A. Patil, S. Banerjee, Y. Patil and J. Khandare, Nanoscale Adv., 2020, 2, 5746 DOI: 10.1039/D0NA00575D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements