Issue 5, 2020

Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges

Abstract

Over the past decade, two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted tremendous research interest for future electronics owing to their atomically thin thickness, compelling properties and various potential applications. However, interface engineering including contact optimization and channel modulations for 2D TMDCs represents fundamental challenges in ultimate performance of ultrathin electronics. This article provides a comprehensive overview of the basic understanding of contacts and channel engineering of 2D TMDCs and emerging electronics benefiting from these varying approaches. In particular, we elucidate multifarious contact engineering approaches such as edge contact, phase engineering and metal transfer to suppress the Fermi level pinning effect at the metal/TMDC interface, various channel treatment avenues such as van der Waals heterostructures, surface charge transfer doping to modulate the device properties, and as well the novel electronics constructed by interface engineering such as diodes, circuits and memories. Finally, we conclude this review by addressing the current challenges facing 2D TMDCs towards next-generation electronics and offering our insights into future directions of this field.

Graphical abstract: Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges

Article information

Article type
Review Article
Submitted
23 Nov 2019
Accepted
05 Feb 2020
First published
06 Feb 2020

Nanoscale Horiz., 2020,5, 787-807

Interface engineering of two-dimensional transition metal dichalcogenides towards next-generation electronic devices: recent advances and challenges

W. Liao, S. Zhao, F. Li, C. Wang, Y. Ge, H. Wang, S. Wang and H. Zhang, Nanoscale Horiz., 2020, 5, 787 DOI: 10.1039/C9NH00743A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements