Proposed mechanical method for switching the spin transport channel in two-dimensional magnetic metal–magnetic semiconductor van der Waals contacts†
Abstract
Developing simple nonmagnetic methods to efficiently control spin transport across magnetic metal–magnetic semiconductor contacts plays a key role in developing high-performance nano-spintronic devices, since a magnetic field is hard to apply locally. For this purpose, based on first principles calculations, we here propose a mechanical means for manipulating the spin transport across two-dimensional magnetic metal–magnetic semiconductor van der Waals contacts formed between representative metallic Fe3GeTe2 and semiconducting CrGeTe3/CrI3 nanosheets. For such contacts, there exist four spin resolved Schottky barriers, i.e. the n/p-type Schottky barriers in the up/down spin channels, in which the dominant transport spin channel, characterized by the lowest Schottky barrier, can be selectively switched by regulating the magnetic coupling between the magnetic metal and magnetic semiconductor via interfacial sliding. In this way, single spin channel ohmic contacts with reversible spin polarization have been realized.