Issue 7, 2020

Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability

Abstract

Grouping and read-across has emerged as a reliable approach to generate safety-related data on nanomaterials (NMs). However, its successful implementation relies on the availability of detailed characterisation of NM physicochemical properties, which allows the definition of groups based on read-across similarity. To this end, this study assessed the availability and completeness of existing (meta)data on 11 experimentally determined physicochemical properties and 18 NMs. Data on representative NMs were mainly extracted from existing datasets stored in the eNanoMapper database, now available on the European Observatory on Nanomaterials website, while data on case-study NMs were provided by their industrial manufacturers. The extent of available (meta)data was assessed and data gaps were identified, thereby determining future testing needs. Data completeness was assessed by using the information checklists included in the templates for data logging developed by the EU-funded projects NANoREG and GRACIOUS. A completeness score (CS) between 0 and 1 was calculated for each (meta)data unit, template section, property, technique and NM. The results show a heterogeneous distribution of available (meta)data across materials and properties, with none of the selected NMs fully characterised. The average CS calculated for representative NMs (0.43) was considerably lower than for case-study NMs (0.68). The low CS was largely caused by missing information on sample preparation and standard operating procedures, and was attributed to a lack of harmonised data reporting and entry procedure. This study therefore suggests that a persistent use of well-defined and harmonised reporting schemes for experimental results is a useful tool to increase (meta)data completeness and ensure their integration and reuse.

Graphical abstract: Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2019
Accepted
19 Dec 2019
First published
12 Feb 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2020,12, 4695-4708

Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability

D. Comandella, S. Gottardo, I. M. Rio-Echevarria and H. Rauscher, Nanoscale, 2020, 12, 4695 DOI: 10.1039/C9NR08323E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements