Issue 5, 2020

Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction

Abstract

Formate is a kind of carbon-neutral fuel that can be synthesized by electrochemical conversion of CO2, however, the generated aqueous formate electrolyte is still short of potential application. Here, formate solution is proposed to be utilized as anode fuels of direct formate fuel cells through the formate oxidation reaction (FOR), and graphene supported AgPd nanoalloys (AgPd/rGO) are prepared to catalyze the FOR. Specifically, the mass activity of the as-prepared Ag49Pd51/rGO catalyst is 4.21 A mg−1Pd and the retention activity of Ag49Pd51/rGO is 49.1% of initial activity after successive 500 cycles, which is 2.48 and 3.03 times higher than that of unsupported Ag51Pd49 nanoalloys. When increasing the positive scan limit from 0.0 to 0.8 V, the mass activity of the Ag49Pd51/rGO catalyst increases from 2.32 to 6.03 A mg−1Pd and Pd surface coverage increases from 51.87% to 62.42%, indicating the occurrence of surface reconstruction where Pd atoms migrate to the surface of AgPd nanoalloys, and less intensive reconstruction is observed in unsupported Ag51Pd49 nanoalloys, whose mass activity increases from 1.35 to 2.49 A mg−1Pd. The driving force and kinetic path are calculated for the surface reconstruction induced by the adsorption of H, O and C atoms, in the case of C atoms on graphene, the segregation energy of surface Pd atoms in the AgPd nanoalloy is −1.16 eV, and the activation energy for the migration of subsurface Pd atoms to the surface is 0.54 eV, which are lower than the segregation (0.03 eV) and activation (2.06 eV) energy on a clean alloy surface.

Graphical abstract: Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction

Supplementary files

Article information

Article type
Paper
Submitted
12 Nov 2019
Accepted
31 Dec 2019
First published
02 Jan 2020

Nanoscale, 2020,12, 3469-3481

Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction

L. Guo, F. Chen, T. Jin, H. Liu, N. Zhang, Y. Jin, Q. Wang, Q. Tang and B. Pan, Nanoscale, 2020, 12, 3469 DOI: 10.1039/C9NR09660D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements