Insights into plasmon induced keto–enol isomerization†
Abstract
Chemical reactions that are driven by plasmon-induced hot carriers are a timely topic of interest to chemists and material scientists as they provide catalytic alternatives that may reduce cost and/or waste. Herein, we monitored the localized surface plasmon resonance-induced keto–enol isomerization process of 2-mercapto-4(3H)-quinazolinone (MQ) by time-dependent surface enhanced Raman scattering (SERS), where the MQ molecules are adsorbed on gold nanoparticles (GNP) surface by Au–S bonds. The mechanism of keto–enol isomerization has been successfully investigated, and it is found that the isomerization is induced by hot hole transfer from GNPs to the adsorbed molecules. The present investigation could provide significant insights into hot hole catalyzed chemical reactions via SERS spectra and theoretical calculations.