Electrochemically addressable nanofluidic devices based on PET nanochannels modified with electropolymerized poly-o-aminophenol films†
Abstract
Nanofluidic field-effect transistors (nFETs) have attracted attention from the scientific community due to their remarkable level of control over ionic transport. Particularly, the combination of nanofluidic systems and electroactive polymers has demonstrated to be an interesting approach to achieve an electrochemically addressable device. In this work, the development of nFETs based on the integration of electropolymerized poly-o-aminophenol (POAP) films into track-etched nanochannels is proposed. The electropolymerization of POAP on the tip side of Au-sputtered asymmetric PET nanochannels not only allowed having a programmable tip diameter but also offered a precise and very rapid control of ionic transport by switching an external bias voltage. Moreover, the system exhibited a reversible behaviour between non-selective and anion-selective states. We believe that this work provides new tools and concepts to design and build high-performance nanofluidic field-effect transistors working under electrochemically controlled conditions.