Low-temperature direct synthesis of perovskite nanocrystals in water and their application in light-emitting diodes†
Abstract
Cesium lead halide perovskite nanocrystals (PNCs) have aroused tremendous research attention because of their excellent optoelectronic properties. Herein, we developed a facile and green low-temperature strategy free of organic solvents, in which only pure water was adopted as the solvent, to synthesize CsPbBr3 NCs. Intriguingly, although formed with the assistance of water, the obtained CsPbBr3 NCs present a cubic crystal structure, photoluminescence quantum yield (PLQY) of 75%, and narrow emission line width for bright green emission. Furthermore, both electroluminescence (EL) and photoluminescence (PL)-based light-emitting diodes (LEDs) present intrinsic green emission originating from the as-prepared CsPbBr3 NCs. Hence, this work offered a novel eco-friendly avenue for the preparation of perovskite NCs for their practical applications in LEDs.