Issue 10, 2020

Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2

Abstract

Two-dimensional materials are ideal platforms for intriguing physics and optoelectronic applications because of their ultrathin thicknesses and excellent properties in optics and electronics. Further studies on enhancing the interaction between light and two-dimensional materials by combining metallic nanostructures have generated broad interests in recent years, such as enhanced photoluminescence, strong coupling and functional optoelectronics. In this work, an ultrathin circular polarimeter consisting of chiral plasmonic metasurface and monolayer semiconductor is proposed to detect light with different circular polarization within a compact device. A designed chiral plasmonic metasurface with sub-wavelength thickness is integrated with monolayer MoSe2, and the circular-polarization-dependent photocurrent responses of right and left circularly polarized light for both left- and right-handed metasurfaces are experimentally demonstrated. The photoresponse circular dichroism is also obtained, which further indicates the remarkable performance of the proposed device in detecting and distinguishing circularly polarized light. This design offers a great potential to realize multifunctional measurements in an ultrathin and ultracompact two-dimensional device for future integrated optics and optoelectronic applications with circularly polarized light.

Graphical abstract: Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2019
Accepted
21 Feb 2020
First published
24 Feb 2020

Nanoscale, 2020,12, 5906-5913

Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2

Q. Jiang, B. Du, M. Jiang, D. Liu, Z. Liu, B. Li, Z. Liu, F. Lin, X. Zhu and Z. Fang, Nanoscale, 2020, 12, 5906 DOI: 10.1039/C9NR10768A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements