Issue 21, 2020

Direct 3D printing of graphene using capillary suspensions

Abstract

Conventional 3D printing of graphene requires either a complex formulation of the ink with large quantities of polymers or essential post-processing steps such as freeze drying to allow printability. Here we present a graphene capillary suspension (GCS) containing 16.67 wt% graphene nanoparticles in aqueous suspension with 3.97 wt% carboxymethyl cellulose (CMC) as a stabiliser and a small quantity of the immiscible liquid octanol. This is shown to have the appropriate rheological properties for 3D printing, which is demonstrated through the fabrication of a simple lattice structure by direct writing and air drying at room temperature. The printed structure has a porosity of 81%, is robust for handling with a compression strength of 1.3 MPa and has an electrical conductivity of 250 S m−1. After heat treatment at 350 °C conductivity is 2370 S m−1 but the strength reduces to 0.4 MPa. X-Ray tomography of the internal architecture after printing shows the formation of the capillary suspension eliminates ordering of the 2D materials during extrusion through the printer nozzle. Thus capillary suspensions can be used to direct write graphene 3D structures without the necessity of complicated drying steps or burn-out of large quantities of polymer additions, facilitating shape retention and property control as compared to current 2D material ink formulations used for 3D printing.

Graphical abstract: Direct 3D printing of graphene using capillary suspensions

Supplementary files

Article information

Article type
Communication
Submitted
24 Dec 2019
Accepted
06 Mar 2020
First published
21 May 2020
This article is Open Access
Creative Commons BY license

Nanoscale, 2020,12, 11440-11447

Direct 3D printing of graphene using capillary suspensions

H. Ding, S. Barg and B. Derby, Nanoscale, 2020, 12, 11440 DOI: 10.1039/C9NR10831A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements