Issue 16, 2020

Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC

Abstract

Plenty of strategies focused on covalent interaction have been developed to functionalize graphene's surface in order to employ it in a wide range of applications. Among them, the use of radical species including nitrene, carbene and aryl diazonium salts is regarded as a promising strategy to establish the covalent functionalization of graphene. In this work, we highlight the effect of diazonium chemistry on the electronic properties of graphene on SiC. On the basis of X-ray and synchrotron-based photoemission experiments, we were able to prove that 3,4,5-trimethoxybenzenediazonium (TMeOD) units, reduced and chemisorbed onto graphene using electrochemistry, preserve the electronic structure of the Dirac cone, through inducing a slightly additional n-type doping of graphene, as revealed by a downshift of the Dirac cone probed by angle-resolved photoemission experiments.

Graphical abstract: Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2020
Accepted
26 Mar 2020
First published
27 Mar 2020

Nanoscale, 2020,12, 9032-9037

Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC

G. Ambrosio, A. Brown, L. Daukiya, G. Drera, G. Di Santo, L. Petaccia, S. De Feyter, L. Sangaletti and S. Pagliara, Nanoscale, 2020, 12, 9032 DOI: 10.1039/D0NR01186J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements