Fluorescent nanoparticle-based Internet of things
Abstract
A prototypal molecular Internet of things (IoT) network is reported. Starting from the design of the communication architecture, we have theoretically simulated molecular messenger information exchange by means of fluid-based advection. The objective was to determine the key experimental parameters affecting information storage and transfer efficiency. The first working molecular-IoT prototype, based on a chemical communication network, was then developed. Its selectivity was ensured by employing as many different chemical messengers as networked devices; thus three different carbon nanoparticles, characterized by different fluorescence wavelengths, were employed to ensure an effective communication between three networked actuators.