Issue 20, 2020

Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe2O4 nanoarrays to enhance the oxygen evolution electrocatalysis

Abstract

A better solid–liquid–gas three-phase boundary is vital for low energy cost oxygen evolution reaction (OER), making the designed regulation of interfacial atmosphere necessary. Herein, we find that the OER electrocatalysis can be dramatically improved by synergistically forming disordered electronic structures and superficial amorphous layers, as superficial oxyhydroxide, phosphorus-doped NiFe2O4 nanoarrays on nitrogen-doped carbon nanofibers (OP-NiFe2O4/NCNFs). Unveiled by the depth-profiling analysis from the X-ray photoelectron spectroscopy, the contents of phosphorous doping in the OP-NiFe2O4 nanoarrays change dynamically from outside to inside due to its in situ superficial reconstruction into the oxyhydroxide layer, thereby accelerating electron transfer between heterogeneous phases. As revealed by density functional theory calculations, this amorphous oxyhydroxide layer and dynamically varied phosphorous content would positively shift the d-band center of the NiFe2O4-related compounds, leading to lower adsorption energy towards water molecule. Thus, the OP-NiFe2O4/NCNF electrocatalyst displays a low overpotential of 260 mV at a current density of 10 mA cm−2 and a small Tafel slope of 44.8 mV dec−1 in an alkaline medium.

Graphical abstract: Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe2O4 nanoarrays to enhance the oxygen evolution electrocatalysis

Supplementary files

Article information

Article type
Communication
Submitted
21 Feb 2020
Accepted
29 Apr 2020
First published
30 Apr 2020

Nanoscale, 2020,12, 10977-10986

Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe2O4 nanoarrays to enhance the oxygen evolution electrocatalysis

W. Zong, D. Rao, H. Guo, Y. Ouyang, Yue-E. Miao, W. Wang, J. Wang, F. Lai and T. Liu, Nanoscale, 2020, 12, 10977 DOI: 10.1039/D0NR01496F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements