Issue 28, 2020

Modulation of field-like spin orbit torque in heavy metal/ferromagnet heterostructures

Abstract

Spin orbit torque (SOT) has drawn widespread attention in the emerging field of magnetic memory devices, such as magnetic random access memory (MRAM). To promote the performance of SOT-MRAM, most efforts have been devoted to enhance the SOT switching efficiency by improving the damping-like torque. Recently, some studies noted that the field-like torque also plays a crucial role in the nanosecond-timescale SOT dynamics. However, there is not yet an effective way to tune its relative amplitude. Here, we experimentally modulate the field-like SOT in W/CoFeB/MgO trilayers through tuning the interfacial spin accumulation. By performing spin Hall magnetoresistance measurement, we find that the CoFeB with enhanced spin dephasing, either generated from larger layer thickness or from proper annealing, can distinctly boost the spin absorption and enhance the interfacial spin mixing conductance Gr. While the damping-like torque efficiency increases with Gr, the field-like torque efficiency is found to decrease with it. The results suggest that the interfacial spin accumulation, which largely contributes to the field-like torque, is reduced by higher interfacial spin transparency. Our work shows a new path to further improve the performance of SOT-based ultrafast magnetic devices.

Graphical abstract: Modulation of field-like spin orbit torque in heavy metal/ferromagnet heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
08 Apr 2020
Accepted
11 Jun 2020
First published
12 Jun 2020

Nanoscale, 2020,12, 15246-15251

Modulation of field-like spin orbit torque in heavy metal/ferromagnet heterostructures

Z. Wang, H. Cheng, K. Shi, Y. Liu, J. Qiao, D. Zhu, W. Cai, X. Zhang, S. Eimer, D. Zhu, J. Zhang, A. Fert and W. Zhao, Nanoscale, 2020, 12, 15246 DOI: 10.1039/D0NR02762F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements