Issue 25, 2020

Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy

Abstract

Tumor hypoxia compromises the effects of photodynamic therapy that consumes oxygen in the therapeutic process. Herein, a platinum (Pt)-carbon-integrated nanozyme with favorable catalase-like activity and photosensitizing properties was successfully constructed by immobilizing an ultrasmall Pt nanozyme into a MOF-derived carbon nanozyme through an in situ reduction strategy. The integration of a Pt nanozyme significantly improves the catalase activity of a carbon nanozyme that can effectively catalyze the decomposition of endogenous hydrogen peroxide to produce oxygen to improve the effects of photodynamic therapy. In addition, the integration of a Pt nanozyme also enhances the intrinsic photothermal performance of a carbon nanozyme. Combining the improved catalase-like activity with the enhanced photothermal properties together, the Pt-carbon nanozyme exhibits remarkable tumor inhibition ability in vivo. Thus, utilizing the enzymatic activity and photothermal/photosensitizing properties of nanozymes has great potential to overcome the limitations of traditional therapeutic strategies, and could inspire new directions for nanozyme-based biomedical applications.

Graphical abstract: Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy

Supplementary files

Article information

Article type
Paper
Submitted
09 Apr 2020
Accepted
28 May 2020
First published
29 May 2020

Nanoscale, 2020,12, 13548-13557

Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy

Y. Yang, D. Zhu, Y. Liu, B. Jiang, W. Jiang, X. Yan and K. Fan, Nanoscale, 2020, 12, 13548 DOI: 10.1039/D0NR02800B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements