Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications
Abstract
In recent years, electrochemiluminescence (ECL) nanosensing systems have undergone rapid development and made significant progress in ultrasensitive analysis and cell imaging. Because of the unique advantages of high selectivity, ultra-sensitivity, and good reproducibility, ECL nanosensors can open new paths for cancer diagnosis. With the development of ECL nanosensors, high-throughput analysis, visual detection and spatially resolved ECL imaging of single cells are being realized. The innovations of ECL nanosensors consist of electrochemical excitation, coreactant catalysis, light radiation and luminescence signal amplification, which involve several fields such as nanotechnology, catalysis, optics, and electrochemistry. The developments of ECL instruments also relate to imaging technology. Herein, we review the construction modes, sensing strategies and cancer diagnosis applications of ECL nanosenors. Firstly, the nano-components of the ECL sensing system are discussed. The construction and signal amplification methods of the nanosensing system are emphasized. Secondly, the high-efficiency cancer identification strategies are presented, including protein tumor marker detection, nucleic acid assay, cancer cell identification and exosome detection. The recent advances in representative examples of ECL nanosenors in cancer diagnosis are highlighted, including high-throughput ECL analysis, in situ assay, visual ECL detection, single-cell imaging diagnosis, and so on. Finally, the challenges are featured based on the recent development of the ECL nanosensing system in the clinical diagnosis. The ECL nanosensors provide effective and reliable analytical methods and open new paths for cancer diagnosis. It is noteworthy that the prospects of the ECL nanosensing system in clinical diagnosis are instructive to the developments of other nanosensor research.
- This article is part of the themed collection: Recent Review Articles