Issue 27, 2020

1D topological phases in transition-metal monochalcogenide nanowires

Abstract

The Su–Schrieffer–Heeger (SSH) model is a prototypical one-dimensional (1D) diatomic lattice model for non-trivial topological phases and topological excitations. Theoretically, many variations and extensions of the SSH model have been proposed and explored to better understand the novel aspects of topological physics in low dimensions on the nanoscale. However, the outstanding challenge remains to find real nanomaterials with robust structural stability for realizing the 1D topological states. Here, we develop an extended version of the SSH model with multi-atomic bases of four, six and eight atoms and an imposed screw rotation symmetry. Furthermore, based on first-principles calculations, we demonstrate the realization of this model in transition metal monochalcogenide M6X6 (M = Mo and W; X = S, Se and Te) nanowires. The topological features of the doped M6X6 nanowires are confirmed with non-trivial edge modes and e/2 fractional charges, representative of the 1D non-trivial Zak phase. Our finding not only sheds new light on our fundamental understanding of 1D topological physics, but also significantly extends the scope of 1D topological materials that will attract immediate experimental interest, since isolated M6X6 nanowires have already been synthesized in experiments.

Graphical abstract: 1D topological phases in transition-metal monochalcogenide nanowires

Supplementary files

Article information

Article type
Paper
Submitted
06 May 2020
Accepted
14 Jun 2020
First published
15 Jun 2020

Nanoscale, 2020,12, 14661-14667

Author version available

1D topological phases in transition-metal monochalcogenide nanowires

K. Jin and F. Liu, Nanoscale, 2020, 12, 14661 DOI: 10.1039/D0NR03529G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements