Direct electron-beam patterning of monolayer MoS2 with ice†
Abstract
Two-dimensional transition metal dichalcogenides (TMDCs) are considered strong competitors for next generation semiconductor materials. In this paper, we propose direct electron-beam patterning of monolayer MoS2 inspired by an emerging ice lithography technique. Compared to conventional resist-based nanofabrication, ice-assisted patterning is free of contaminations from polymer resist and allows in situ processing of MoS2. The effects of electron beam dose and energy are investigated and nanoribbons with width below 30 nm are attainable. This method is expected to be applicable also to other TMDCs, providing a promising alternative for nanofabrication of 2D material devices.