Issue 33, 2020

tert-Butylhydroperoxide (TBHP) mediated oxidative cross-dehydrogenative coupling of quinoxalin-2(1H)-ones with 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone and 2-hydroxy-1,4-naphthoquinone under metal-free conditions

Abstract

We report an efficient and atom-economical method of C-3 functionalization of quinoxalin-2(1H)-ones with 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone, and 2-hydroxy-1,4-naphthoquinone via the free radical cross-coupling pathway under metal-free conditions. tert-Butylhydroperoxide (TBHP) smoothly promotes the reaction furnishing the cross-dehydrogenative coupling (CDC) products in very good to excellent yields. The protocol neither uses any toxic reagents nor metal catalysts to carry out the reaction, and all the products have been obtained without column chromatography purification. Different radical trapping experiments with 2,2,6,6-tetramethylpiperidine-1-oxyl, butylated hydroxytoluene, and diphenyl ethylene confirm the involvement of radicals.

Graphical abstract: tert-Butylhydroperoxide (TBHP) mediated oxidative cross-dehydrogenative coupling of quinoxalin-2(1H)-ones with 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone and 2-hydroxy-1,4-naphthoquinone under metal-free conditions

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2020
Accepted
04 Aug 2020
First published
07 Aug 2020

Org. Biomol. Chem., 2020,18, 6537-6548

tert-Butylhydroperoxide (TBHP) mediated oxidative cross-dehydrogenative coupling of quinoxalin-2(1H)-ones with 4-hydroxycoumarins, 4-hydroxy-6-methyl-2-pyrone and 2-hydroxy-1,4-naphthoquinone under metal-free conditions

S. Sharma, N. B. Dutta, M. Bhuyan, B. Das and G. Baishya, Org. Biomol. Chem., 2020, 18, 6537 DOI: 10.1039/D0OB01304H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements