Cholesteryl 6-O-acyl-α-glucosides from diverse Helicobacter spp. signal through the C-type lectin receptor Mincle†
Abstract
Helicobacter spp. are Gram-negative bacteria that cause a spectrum of disease in the gut, biliary tree and liver. Many Helicobacter spp. produce a range of cholesteryl α-glucosides that have the potential to act as pathogen associated molecular patterns. We report a highly stereoselective α-glucosylation of cholesterol using 3,4,6-tri-O-acetyl-2-O-benzyl-D-glucopyranosyl N-phenyl-2,2,2-trifluoroacetimidate, which allowed the synthesis of cholesteryl α-glucoside (αCG) and representative Helicobacter spp. cholesteryl 6-O-acyl-α-glucosides (αCAGs; acyl = C12:0, 14:0, C16:0, C18:0, C18:1). All αCAGs, irrespective of the nature of their acyl chain composition, strongly agonised signalling through the C-type lectin receptor Mincle from human and mouse to similar degrees. By contrast, αCG only weakly signalled through human Mincle, and did not signal through mouse Mincle. These results provide a molecular basis for understanding of the immunobiology of non-pylori Helicobacter infections in humans and other animals.
- This article is part of the themed collection: Chemical Biology in OBC