Issue 10, 2020

A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine–detonation nanodiamond–Ag nanoconjugates

Abstract

The present work reports on the synthesis and characterization of novel zinc (2) and indium (3) 2-amino-4-bromophenoxy substituted phthalocyanines (Pcs) along with the self-assembled nanoconjugates formed via π–π stacking interaction onto detonation nanodiamonds (DNDs) to form 2@DNDs and 3@DNDs. 2@DNDs and 3@DNDs were covalently linked to chitosan–silver mediated nanoparticles (CSAg) to form 2@DNDs-CSAg and 3@DNDs-CSAg nanoconjugates. High singlet oxygen quantum yields in DMSO of 0.69 and 0.72 for Pcs alone and 0.90 and 0.92 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively, were obtained. The photodynamic antimicrobial chemotherapy (PACT) activity of both phthalocyanines and nanoconjugates was tested against planktonic cells and biofilms of S. aureus. 2@DNDs-CSAg and 3@DNDs-CSAg caused effective killing with a log reduction of 9.74. In addition, PACT studies on single-species S. aureus biofilms were carried out with log reduction values of 5.12 and 5.27 at 200 μg mL−1 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively.

Graphical abstract: A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine–detonation nanodiamond–Ag nanoconjugates

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2020
Accepted
07 Sep 2020
First published
08 Sep 2020

Photochem. Photobiol. Sci., 2020,19, 1442-1454

A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine–detonation nanodiamond–Ag nanoconjugates

Y. I. Openda, R. Matshitse and T. Nyokong, Photochem. Photobiol. Sci., 2020, 19, 1442 DOI: 10.1039/D0PP00075B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements