Issue 31, 2020

Synthesis of two-phase polymer particles in supercritical carbon dioxide

Abstract

The synthesis of particles with discrete phases using traditional emulsion polymerisation is a well-established process. Phase-separated particles have a wide range of applications, such as in coatings, drug delivery, impact modification and as supports in catalysis. However, as a dry powder is often desired for the end application, post-polymerisation, energy intensive drying steps are usually required for the removal of water. Alternatively, dispersion polymerisation utilising supercritical carbon dioxide (scCO2) as a reaction medium allows for the production of dry, free-flowing powders upon release of the CO2. Here, we present the innovative use of scCO2 to provide a novel and environmentally acceptable route for creating phase-separated particles. Particles containing a high Tg poly(methyl methacrylate) (PMMA) phase, combined with a low Tg polymer phase of either poly(benzyl acrylate) (PBzA) or poly(butyl acrylate) (PBA), were investigated. Both monomers were added to the reaction after the formation of PMMA seed particles. Benzyl acrylate (BzA) was chosen as a model low Tg monomer, with well-defined and detectable functionality when mixed with PMMA. Butyl acrylate (BA) was also used as an alternative, more industrially relevant monomer. The loading of the low Tg monomer was varied and full characterisation of the particles produced was performed to elucidate their internal morphologies and compositions.

Graphical abstract: Synthesis of two-phase polymer particles in supercritical carbon dioxide

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2020
Accepted
08 Jul 2020
First published
08 Jul 2020
This article is Open Access
Creative Commons BY license

Polym. Chem., 2020,11, 5029-5039

Synthesis of two-phase polymer particles in supercritical carbon dioxide

A. J. Haddleton, T. M. Bennett, X. Chen, R. L. Atkinson, V. Taresco and S. M. Howdle, Polym. Chem., 2020, 11, 5029 DOI: 10.1039/D0PY00729C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements