Issue 4, 2020

Squaramide based ion pair receptors possessing ferrocene as a signaling unit

Abstract

We synthesized ion pair receptors 1 and 2 consisting of a benzocrown ether cation binding site and a ferrocene-supported squaramide anion binding domain and compared their binding ability with anion receptor 3, lacking a crown ether unit, using spectroscopic, spectrophotometric, and electrochemical measurements in acetonitrile solution. All receptors were obtained in a modular fashion by sequential amidation of dimethyl squarate with corresponding amines, which allows for the simple introduction of a ferrocene unit and enables them to act as sensors. We found that ion pair receptors 1 and 2 recognized the tested anions more strongly in the presence of cations, whereas the homotopic anion receptor 3 was unable to bind sodium or potassium salts more strongly than tetrabutylammonium salts. This enhancement in anion binding was attributed to a cation complexation induced alteration in the nature of the phenyl ring substituents, directly linked to the squaramide anion binding site, changing from electron-donating to more withdrawing. Solid state X-ray measurements support this design principle of the receptors and reveal strong coordination of anions and cations to the corresponding binding domains. In both 1·NaCl and 2·KCl systems, organic moieties linked by the cations form 1-D polymeric structures in the crystal lattice. However, in the case of the 2·NaCl complex the polymers’ shape and orientation result in the formation of porous crystals with approximately 12% of the space unoccupied. Electrochemical measurements showed when the ion pair receptors (but not the anion receptor) were pretreated with sodium or potassium cations, the addition of anions resulted in greater changes in oxidation and reduction potentials compared to the addition of anions to the same receptors in the absence of cations. Overall, the study demonstrates that squaramides offer a convenient platform for constructing ion pair sensors in modular fashion by varying the cation binding site and reporters. This opens up the possibility of recognizing salts in real life scenarios where simultaneous binding of anions and cations is needed.

Graphical abstract: Squaramide based ion pair receptors possessing ferrocene as a signaling unit

Supplementary files

Article information

Article type
Research Article
Submitted
08 Nov 2019
Accepted
08 Jan 2020
First published
09 Jan 2020

Inorg. Chem. Front., 2020,7, 972-983

Squaramide based ion pair receptors possessing ferrocene as a signaling unit

M. Zaleskaya, D. Jagleniec, M. Karbarz, Ł. Dobrzycki and J. Romański, Inorg. Chem. Front., 2020, 7, 972 DOI: 10.1039/C9QI01452G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements