Issue 10, 2020, Issue in Progress

The effects of different factors on the removal mechanism of Pb(ii) by biochar-supported carbon nanotube composites

Abstract

Herein, biochar-supported nanomaterials were synthesized using a mixture of chestnut shells and carbon nanotubes via slow pyrolysis at 600 °C for 1 h. Then, the adsorption ability of chestnut shell-carbon nanotubes (CS-CNTs) towards the removal of aqueous Pb(II) was tested. The removal capacity of Pb(II) by CS-CNT was 1641 mg g−1, which was significantly higher than that by the biochar of chestnut shells (CSs) (1568 mg g−1), which demonstrated that the sorption capacity could be improved by the carbon nanotubes. The factors studied here indicated that the adsorption was rapid in the initial 15 min under the conditions of the Pb(II) concentration of 50 mg L−1 and the pH value of 5, and the values reached 1417 mg g−1 and 1584 mg g−1. The adsorption rate and capacity increased on increasing the concentration of NaCl. The sorption reaction was consistent with the Langmuir model, indicating a mono-layer adsorption behavior. The adsorption process can also be defined via the pseudo-second-order model, suggesting that the adsorption of Pb(II) might be controlled by chemisorption. After carrying out four cycles of adsorption–desorption experiments, the adsorption rates of CS and CS-CNT remained at 82.92% and 88.91%, respectively, indicating that the biochar samples had stable and excellent sorption ability for heavy metals and huge application value. Thus, this study would provide a promising sorbent for the treatment and remediation of metal contaminants.

Graphical abstract: The effects of different factors on the removal mechanism of Pb(ii) by biochar-supported carbon nanotube composites

Article information

Article type
Paper
Submitted
13 Nov 2019
Accepted
13 Jan 2020
First published
05 Feb 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 5988-5995

The effects of different factors on the removal mechanism of Pb(II) by biochar-supported carbon nanotube composites

Y. Yang, F. Sun, J. Li, J. Chen and M. Tang, RSC Adv., 2020, 10, 5988 DOI: 10.1039/C9RA09470A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements