H2S detection at low temperatures by Cu2O/Fe2O3 heterostructure ordered array sensors†
Abstract
2D heterostructures are promising gas sensor materials due to their surface/interface effects and hybrid properties. In this research, Cu2O/Fe2O3 heterostructure ordered arrays were synthesized using an in situ electrodeposition method for H2S detection at low temperatures. These arrays possess a periodic long range ordered structure with horizontal multi-heterointerfaces, leading to superior gas sensitivity for synergistic effects at the heterointerfaces. The sensor based on the Cu2O/Fe2O3 heterostructure ordered arrays exhibits a dramatic improvement in H2S detection at low temperatures (even as low as −15 °C). The response is particularly significant at room and human body temperatures since the conductivity of the arrays can change by up to three orders of magnitude in a 10 ppm H2S atmosphere. These good performances are also attributed to the formation of metallic Cu2S conducting channels. Our results imply that the Cu2O/Fe2O3 heterostructure ordered arrays are promising candidates for high-performance H2S gas sensors that function at low temperatures as well as breath analysis systems for disease diagnosis.