Issue 18, 2020

Sr9In(VO4)7 as a model ferroelectric in the structural family of β-Ca3(PO4)2-type phosphates and vanadates

Abstract

Sr9In(VO4)7 was prepared by a solid-state method at 1270 K in air. This vanadate has the β-Ca3(PO4)2-type structure and crystallizes in polar space group R3c. The structural parameters of Sr9In(VO4)7 were refined by the Rietveld method from laboratory powder X-ray diffraction data (XRD): the lattice parameters are a = 11.18016(9) Å and c = 39.6170(3) Å with Z = 6. In3+ cations occupy the octahedral M5 site, Sr2+ cations occupy the M1, M2, and M3 sites of the β-Ca3(PO4)2-type structure, and the M4 site remains vacant. Sr9In(VO4)7 was characterized by differential thermal analysis (DTA), optical second-harmonic generation (SHG), high-temperature XRD, and dielectric measurements. All these methods prove the existence of a ferroelectric–paraelectric phase transition at Tc = 974 K. This transition is compared with a similar transition in Ca9In(PO4)7 with lower Tc = 902 K. The polar-to-centrosymmetric phase transition in such compounds has a quite unique mechanism of the order–disorder type. The structural transition involves slight shifts of the M1, M2, M3 cations and the E2O4, E3O4 tetrahedra, while half of the E1O4 tetrahedra (E = P or V) statistically reverse their orientation along the three-fold axis, so that the centre of symmetry appears in the structure as a whole. To invert the E1O4 tetrahedron, one oxygen anion should pass a large neighbouring cation (Sr2+ or Ca2+) that is only possible when intense rotational vibrations of the tetrahedra are excited at high temperatures. The lower Curie temperature in Ca9In(PO4)7 corresponds to the smaller rotational vibration amplitude of the P1O4 tetrahedron required to reverse this tetrahedra at Tc in comparison with V1O4 in Sr9In(VO4)7.

Graphical abstract: Sr9In(VO4)7 as a model ferroelectric in the structural family of β-Ca3(PO4)2-type phosphates and vanadates

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2019
Accepted
28 Feb 2020
First published
17 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 10867-10872

Sr9In(VO4)7 as a model ferroelectric in the structural family of β-Ca3(PO4)2-type phosphates and vanadates

A. A. Belik, D. V. Deyneko, O. V. Baryshnikova, S. Yu. Stefanovich and B. I. Lazoryak, RSC Adv., 2020, 10, 10867 DOI: 10.1039/C9RA10336H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements