Properties of multifunctional composite materials based on nanomaterials: a review
Abstract
Composite materials are being used for high-end applications such as aviation technology, space ships, and heavy equipment manufacturing. The use of composite materials has been observed in recent advancements in the field of multifunctional composite materials (MFCMs). There is continuous progress related to improvements, innovations, and replacement of metals inspite of rigorous destructive and non-destructive testing, proving the toughness and lifelong durability of such materials. The present study aims to review the topics relevant to modern multifunctional composite materials. The reviewed articles mostly cover the field of MFCMs based on nanomaterials. The structural functions emphasize on the mechanical properties such as fracture toughness, strength, thermal stability, damping, stiffness, and tensile strength. The non-structural properties include biodegradability, thermal conductivity, electrical conductivity, and electromagnetic interference (EMI) shielding. The study has concluded that the applications of multifunctional nanoparticle-based composite materials and structures include durable but light-weight aircraft wings, components and structures of electric self-driving vehicles, and biomedical composite materials for drug delivery.
- This article is part of the themed collection: 2020 Reviews in RSC Advances