Issue 11, 2020, Issue in Progress

Catalysis with magnetically retrievable and recyclable nanoparticles layered with Pd(0) for C–C/C–O coupling in water

Abstract

Nanoparticles layered with palladium(0) were prepared from nano-sized magnetic Fe3O4 by coating it with silica and then reacting sequentially with phenylselenyl chloride under an N2 atmosphere and palladium(II) chloride in water. The resulting Fe3O4@SiO2@SePh@Pd(0) NPs are magnetically retrievable and the first example of NPs in which the outermost layer of Pd(0) is mainly held by selenium. The weight percentage of Pd in the NPs was found to be 1.96 by ICP-AES. The NPs were authenticated via TEM, SEM-EDX, XPS, and powder XRD and found to be efficient as catalysts for the C–O and C–C (Suzuki–Miyaura) coupling reactions of ArBr/Cl in water. The oxidation state of Pd in the NPs having size distribution from ∼12 to 18 nm was inferred as zero by XPS. They can be recycled more than seven times. The main features of the proposed protocols are their mild reaction conditions, simplicity, and efficiency as the catalyst can be separated easily from the reaction mixture by an external magnet and reused for a new reaction cycle. The optimum loading (in mol% of Pd) was found to be 0.1–1.0 and 0.01–1.0 for O-arylation and Suzuki–Miyaura coupling, respectively. For ArCl, the required amount of NPs was more as compared to that needed for ArBr. The nature of catalysis is largely heterogeneous.

Graphical abstract: Catalysis with magnetically retrievable and recyclable nanoparticles layered with Pd(0) for C–C/C–O coupling in water

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2019
Accepted
27 Jan 2020
First published
11 Feb 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 6452-6459

Catalysis with magnetically retrievable and recyclable nanoparticles layered with Pd(0) for C–C/C–O coupling in water

A. K. Sharma, H. Joshi and A. K. Singh, RSC Adv., 2020, 10, 6452 DOI: 10.1039/C9RA10618A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements