Issue 32, 2020

Characteristics and hazards of the cinnamaldehyde oxidation process

Abstract

Pressure and temperature behavior of the cinnamaldehyde oxidation process was determined using a custom-designed mini closed pressure vessel test (MCPVT), which is a new method to investigate the stability and hazard assesment of the cinnamaldehyde oxidation reaction. The oxidation products were analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that cinnamaldehyde was stable under nitrogen atmosphere but very unstable under oxygen atmosphere. The initial oxidation products were analyzed by iodimetry and the cinnamaldehyde peroxide value could reach 139.44 mmol kg−1 when the oxidation temperature was 308 K. The oxidation kinetics of cinnamaldehyde were studied by using the pressure versus time (Pt) curves obtained from the MCPVT process. The reaction is a second-order reaction, the kinetic equation is ln k = −2233.66 × (1/T) + 11.19, and the activation energy Ea is 18.57 kJ mol−1 at 308–338 K. The explosion of the cinnamaldehyde oxidation reaction was observed by MCPVT, in which the onset temperature was 373 K. The main products of cinnamaldehyde oxidation are acetaldehyde, benzaldehyde, phenylacetaldehyde, acetophenone, 2-hydroxyphenyl acetone, cinnamaldehyde epoxide, benzoic acid, and cinnamic acid. Oxidation is a three-step process: (1) cinnamaldehyde reacts with oxygen to form peroxides; (2) complex oxidation reactions are caused by the thermal decomposition of peroxides; (3) rapid oxidation and thermal decomposition lead to explosion hazard.

Graphical abstract: Characteristics and hazards of the cinnamaldehyde oxidation process

Article information

Article type
Paper
Submitted
23 Dec 2019
Accepted
29 Apr 2020
First published
20 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 19124-19133

Characteristics and hazards of the cinnamaldehyde oxidation process

C. Yu, Y. Li, M. Liang, S. Dai, L. Ma, W. Li, F. Lai and X. Liu, RSC Adv., 2020, 10, 19124 DOI: 10.1039/C9RA10820C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements