Issue 9, 2020, Issue in Progress

Self-healing composite hydrogel with antibacterial and reversible restorability conductive properties

Abstract

Self-healable PAA/PPy–Fe composite hydrogels have been simply synthesized in one step and utilized for antibacterial and electrical conductivity application. The network of hydrogel is composed of polyacrylic acid (PAA) and Fe3+ ions with interlacing of the second polymeric chain of polypyrrole (PPy). In this study, ammonium persulfate (APS) was utilized to initiate the polymerization of both acrylic acid and pyrrole. Such hydrogels exhibited good mechanical properties and remarkable self-healing efficiency as well. The self-healing ability of the hydrogels was facilitated by ionic interaction between carboxylic anion groups (COO–) from polyacrylic acid (PAA) and Fe3+ ions. Moreover, the antibacterial activity of the composite hydrogels was examined on Escherichia coli via the disk diffusion method and the zone of inhibition was obtained in the range of 1.26–1.56 cm after incubation for 12 h. In addition, demonstration of the PAA/PPy–Fe composite hydrogels in electrical conductivity applications was performed in which the composite hydrogel was set up in an electrical circuit consisting of an LED and powered by 3 V batteries. The results showed that the electricity could light-up the LED through the PAA/PPy–Fe composite hydrogels and possessed reversible restorability, as indicated by the healed hydrogel consistently lighting-up the LED in the electrical circuit.

Graphical abstract: Self-healing composite hydrogel with antibacterial and reversible restorability conductive properties

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2020
Accepted
24 Jan 2020
First published
30 Jan 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 5050-5057

Self-healing composite hydrogel with antibacterial and reversible restorability conductive properties

M. Ginting, S. P. Pasaribu, I. Masmur, J. Kaban and Hestina, RSC Adv., 2020, 10, 5050 DOI: 10.1039/D0RA00089B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements