Issue 15, 2020, Issue in Progress

Efficiency and stability enhancement of perovskite solar cells using reduced graphene oxide derived from earth-abundant natural graphite

Abstract

Graphene – two-dimensional (2D) sheets of carbon atoms linked in a honeycomb pattern – has unique properties that exhibit great promise for various applications including solar cells. Herein we prepared two-dimensional (2D) reduced graphene oxide (rGO) nanosheets from naturally abundant graphite flakes (obtained from Tuv aimag in Mongolia) using solution processed chemical oxidation and thermal reduction methods. As a proof of concept, we used our rGO as a hole transporting material (HTM) in perovskite solar cells (PSCs). Promisingly, the use of rGO in the hole transporting layer (HTL) not only enhanced the photovoltaic efficiency of PSCs, but also improved the device stability. In particular, the best performing PSC employing rGO nanosheets exhibited a power conversion efficiency (PCE) of up to 18.13%, while the control device without rGO delivered a maximum efficiency of 17.26%. The present work demonstrates the possibilities for solving PSC issues (stability) using nanomaterials derived from naturally abundant graphite sources.

Graphical abstract: Efficiency and stability enhancement of perovskite solar cells using reduced graphene oxide derived from earth-abundant natural graphite

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2020
Accepted
26 Feb 2020
First published
03 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 9133-9139

Efficiency and stability enhancement of perovskite solar cells using reduced graphene oxide derived from earth-abundant natural graphite

S. Suragtkhuu, O. Tserendavag, U. Vandandoo, A. S. R. Bati, M. Bat-Erdene, J. G. Shapter, M. Batmunkh and S. Davaasambuu, RSC Adv., 2020, 10, 9133 DOI: 10.1039/D0RA01423K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements