Issue 34, 2020, Issue in Progress

Polypyrrole decorated metal–organic frameworks for supercapacitor devices

Abstract

Due to their large specific surface areas and porosity, metal–organic frameworks (MOFs) have found many applications in catalysis, gas separation, and gas storage. However, their use as electronic components such as supercapacitors is stunted due to their poor electrical conductivity. We report a remedy for this by combining the MOF structure with polypyrrole (PPy), a well-known conductive polymer. Three MOFs are studied for modification to this end: CPO-27-Ni and CPO-27-Co (M2DOBDC, M = Ni2+, Co2+, DOBDC = 2,5-dihydroxy-1,4-benzenedicarboxylate) and HKUST-1 (Cu3(BTC)2, BTC = 1,3,5 benzenetricarboxylate). The gravimetric capacitance of pure MOFs is boosted several orders of magnitude after reinforcement of PPy (e.g., from 0.679 to 185 F g−1 for HKUST-1 and PPy–HKUST-1, respectively), and is much higher than reported for pure PPy. In total, these PPy-d-MOFs exhibit specific capacitances up to 354 F g−1, retaining 70% of this value even after 2500 cycles. Among them, the highest capacitance is found for PPy–CPO-27-Ni (354 F g−1), followed by PPy–CPO-27-Co (263 F g−1) and PPy–HKUST-1 (185 F g−1). The maximum operating potential for these electrodes is 0.5 V, which is restricted by the contact of MOF with aqueous electrolyte and with extremely low PPy content. As a solution, higher PPy loading and rational adjustment of particle size and porosity of both MOF and PPy are recommended so that the MOF/electrolyte interface is limited, leading to more robust electrode. The work completed here describes a highly promising approach to tackling the electrically insulating nature of MOFs, paving the way for their use in electrochemical energy storage devices.

Graphical abstract: Polypyrrole decorated metal–organic frameworks for supercapacitor devices

Supplementary files

Article information

Article type
Paper
Submitted
07 Mar 2020
Accepted
28 Apr 2020
First published
27 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 20162-20172

Polypyrrole decorated metal–organic frameworks for supercapacitor devices

N. Patterson, B. Xiao and A. Ignaszak, RSC Adv., 2020, 10, 20162 DOI: 10.1039/D0RA02154G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements