Issue 32, 2020, Issue in Progress

Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions

Abstract

This study provides a novel composite as an efficient adsorbent of cationic methylene blue dye. UiO-66/MIL-101(Fe) binary metal organic framework (MOF) was fabricated using a solvothermal technique. Additionally, the developed binary MOF was modified with carboxylated graphene oxide (GOCOOH) using a post-synthetic technique. The as-fabricated UiO-66/MIL-101(Fe)-GOCOOH composite was analyzed by FTIR, XRD, SEM, BET, TGA, XPS and zeta potential analysis. The adsorption performance of UiO-66/MIL-101(Fe)-GOCOOH composite was examined for its aptitude to adsorb cationic MB dye using a batch technique. The obtained data revealed that, the developed UiO-66/MIL-101(Fe)-GOCOOH composite exhibited higher adsorption capacity compared to UiO-66/MIL-101(Fe) binary MOF. Adsorption isotherms and kinetic studies revealed that MB dye adsorption onto UiO-66/MIL-101(Fe)-GOCOOH composite fitted a Langmuir isotherm model (qm = 448.71 mg gāˆ’1) and both pseudo 1st order and pseudo 2nd order kinetic models. An intra-particle diffusion model showed that the adsorption process occurs through three steps. Besides, thermodynamic data reflected that the adsorption of MB onto UiO-66/MIL-101(Fe)-GOCOOH composite is an endothermic and spontaneous process and the adsorption involves both physisorption and chemisorption interactions. The as-fabricated UiO-66/MIL-101(Fe)-GOCOOH composite exhibited good reusability and can be considered as a promising reusable adsorbent for the treatment of dye-containing industrial effluents with high efficiency.

Graphical abstract: Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2020
Accepted
11 May 2020
First published
19 May 2020
This article is Open Access
Creative Commons BY license

RSC Adv., 2020,10, 19008-19019

Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions

A. S. Eltaweil, E. M. Abd El-Monaem, G. M. El-Subruiti, M. M. Abd El-Latif and A. M. Omer, RSC Adv., 2020, 10, 19008 DOI: 10.1039/D0RA02424D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements