Chemically anchored two-dimensional-SiOx/zero-dimensional-MoO2 nanocomposites for high-capacity lithium storage materials†
Abstract
Silicon oxides are promising alternatives for graphite anodes in lithium-ion batteries. SiOx nanosheets exhibit favorable anodic performances, including outstanding capacity retention and dimensional stability, due to their unique two-dimensional (2D) microstructures, but suffer from low specific capacity and poor initial coulombic efficiency. Here we demonstrate that chemically anchoring of molybdenum dioxide (MoO2) nanoparticles on the surface of 2D-SiOx nanosheets via a Mo–O–Si bond boosts both the reversible capacity and initial coloumbic efficiency without sacrificing the useful properties of 2D-SiOx nanosheets. The enhancements can be attributed to the introduction of a zero-dimensional MoO2 nano-object, which offers abnormal storage sites for lithium. The proposed nano-architecturing shows how we can maximize the advantages of 2D nanomaterials for energy storage applications.