Acquiring an effective CaO-based CO2 sorbent and achieving selective methanation of CO2†
Abstract
CO2 capture, utilization, and storage are promising strategies to solving the problems of superfluous CO2 or energy shortage. Here, mechanochemical reduction of CO2 by a MgH2/CaH2 mixture was first performed, by which we achieve selective methanation of CO2 and acquire an effective CaO-based CO2 sorbent, simultaneously. The selectivity of methanation is near 100% and the yield of CH4 reaches 30%. Four MgO and carbon-doped CaO-based CO2 sorbents (MgO/CaO/C, MgO/2CaO/C, MgO/4CaO/C, and MgO/8CaO/C) were formed as solid products in these reactions. Among them, the MgO/4CaO/C sorbent shows high initial adsorption amount of 59.3 wt% and low average activity loss of 1.6% after 30 cycles. This work provides a novel, well-scalable, and sustainable approach to prepare an efficient inert additive-including CaO-based CO2 sorbent and selectively convert CO2 to CH4 at the same time.