Issue 30, 2020, Issue in Progress

Microwave roasting of blast furnace slag for carbon dioxide mineralization and energy analysis

Abstract

For both the waste treatment of large quantities of blast furnace (BF) slag and carbon dioxide (CO2) that are discharged in ironworks, mineral carbonation by BF slag was proposed in this decade. However, it has not been widely used due to its high energy consumption and low production efficiency. In this study, a microwave roasting method was employed to mineralize CO2 with BF slag, and the process parameters for the sulfation and energy consumption were investigated. A mixture of BF slag and recyclable ammonium sulfate [(NH4)2SO4] (mass ratio, 1 : 2) was roasted in a microwave tube furnace, and then leached with distilled water at a solid : liquid ratio of 1 : 3 (g mL−1). Under the optimized experiment conditions (T = 340 °C, holding time = 2 min), the best sulfation ratios of calcium (Ca), magnesium (Mg), aluminum (Al), and titanium (Ti) were 93.3%, 98.3%, 97.5%, and 80.4%, respectively. Compared with traditional roasting, the production efficiency of this process was more than 10 times higher, and the energy consumption for mineralizing 1 kg of CO2 could be reduced by 40.2% after simulation with Aspen Plus v8.8. Moreover, 236.1 kg of CO2 could be mineralized by one ton of BF slag, and a series of by-products with economic value could also be obtained. The proposed process offers an energy-efficient method with high productivity and good economy for industrial waste treatment and CO2 storage.

Graphical abstract: Microwave roasting of blast furnace slag for carbon dioxide mineralization and energy analysis

Supplementary files

Article information

Article type
Paper
Submitted
28 Mar 2020
Accepted
20 Apr 2020
First published
07 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 17836-17844

Microwave roasting of blast furnace slag for carbon dioxide mineralization and energy analysis

Z. Han, J. Gao, X. Yuan, Y. Zhong, X. Ma, Z. Chen, D. Luo and Y. Wang, RSC Adv., 2020, 10, 17836 DOI: 10.1039/D0RA02846K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements