Issue 36, 2020, Issue in Progress

Tunable and switchable nanoparticle separation with thermo-responsive track-etched membranes prepared by controlled surface-initiated polymerization of poly(N-isopropylacrylamide)

Abstract

This work describes how the control of grafting density and grafted chain length of a thermo-responsive polymer in membrane pores can be utilized to tune the pore size and the switchability of size-based selectivity in the ultrafiltration range. Using a previously established methodology for controlled synthesis, surface-initiated atom transfer polymerization (ATRP) of poly(N-isopropylacrylamide) (PNIPAAm) to the pore walls of poly(ethylene terephthalate) track-etched membranes with experimentally determined pore diameters of 35 nm (PET30) and 110 nm (PET80) is performed. Characterization in this study is mainly done with filtration experiments, making use of the well-defined pore structure of the base membranes. It is demonstrated that both the gravimetrically determined degree of functionalization and the effective pore size determined from water permeability are a linear function of ATRP time. For the grafted PET30 membranes, it is shown that the rejection of lysozyme (diameter ∼ 4 nm) can be switched between 99% at 23 °C and 65% at 45 °C for the membrane with the highest degree of functionalization. For the grafted PET80 membranes, it is found that two different types of membranes can be obtained. Membranes with long grafted chains at low grafting density show very large changes of water permeability as a function of temperature (effective pore size switching ratio of up to 10) and, for example, rejection for 20 nm silica particles of 95% and 23% at 23 °C and 45 °C, respectively. Membranes with PNIPAAm at high grafting density show much lower switching ratios (as low as 1.4, for long enough grafted chains). Effective pore size and thermo-responsive change of pore size can therefore be tuned by the combination of both synthesis parameters, initiator density and ATRP time. The switchable thermo-responsive separation of two colloids with a tailored membrane is demonstrated for mixtures of bovine serum albumin (BSA; ∼7 nm) and silica nanoparticles (20 nm); at 23 °C silica is completely rejected and only BSA is in the permeate; at 40 °C both colloids permeate through the membrane.

Graphical abstract: Tunable and switchable nanoparticle separation with thermo-responsive track-etched membranes prepared by controlled surface-initiated polymerization of poly(N-isopropylacrylamide)

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2020
Accepted
26 May 2020
First published
02 Jun 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 21028-21038

Tunable and switchable nanoparticle separation with thermo-responsive track-etched membranes prepared by controlled surface-initiated polymerization of poly(N-isopropylacrylamide)

K. Daumann, S. Frost and M. Ulbricht, RSC Adv., 2020, 10, 21028 DOI: 10.1039/D0RA03418E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements