Preparation of activated carbon from Dipterocarpus alatus fruit and its application for methylene blue adsorption†
Abstract
Activated carbons were prepared from three parts of Dipterocarpus alatus fruit (wing, endocarp and pericarp), an abundant and renewable waste in Southeast Asia, by chemical activation using ZnCl2, FeCl3, H3PO4 and KOH and physical activation using CO2 and steam. This study indicated that activated carbon prepared from Dipterocarpus alatus fruit could be employed as a promising adsorbent for the removal of methylene blue from aqueous solution. ZnCl2 activation led to an activated carbon with a surface area of 843 m2 g−1 and was able to remove methylene blue from aqueous solution. Adsorption studies were performed and analysed using Langmuir and Freundlich isotherm equations. Adsorption data demonstrated an excellent fit with the Langmuir isotherm model, with the maximum adsorption capacity of 269.3 mg g−1 at equilibrium. Pseudo-first order and pseudo-second order kinetic models were used in this study to describe the adsorption mechanism. The results show that methylene blue adsorption is pseudo-second order, indicating that liquid film diffusion, intra-particle diffusion and surface adsorption coexisted during methylene blue adsorption on the activated carbon. The activated carbon prepared from Dipterocarpus alatus fruit is a low cost and effective adsorbent with a fast rate for the removal of methylene blue from aqueous solutions when compared with a number of activated carbons studied in the literature.