Novel MoS2 quantum dots as a highly efficient visible-light driven photocatalyst in water remediation
Abstract
A direct and efficient hydrothermal system has been established for the synthesis of MoS2 quantum dots (QDs). Novel MoS2 QDs are an excellent potential photocatalysts to enhance photocatalytic response by charge separation under visible light irradiation. The optimum capability of QDs demonstrated the excellent photocatalytic ability for the degradation of organic pollutants. The microstructural, morphological, and optical properties of the MoS2 QDs are defined via X-ray diffraction (XRD), SEM, HRTEM, XPS, and UV-Vis absorption spectroscopy techniques. Under visible light irradiation, MoS2 QDs have great photocatalytic response for the degradation of Rh B that is 20 times higher than those of bulk MoS2 materials. The QDs possess practically the same catalytic response after 5 recycle runs, which is an evident proof of its stability. This course might pave the route toward creating current visible-light caused QD photocatalyst strategies for the highly valuable degradation of organic pollutants or antibiotics.