Issue 60, 2020

Improving thermal and mechanical properties of biomass-based polymers using structurally ordered polyesters from ricinoleic acid and 4-hydroxycinnamic acids

Abstract

Biomass-based copolymers with alternating ricinoleic acid and 4-hydroxycinnamic acid derivatives (p-coumaric acid, ferulic acid, and sinapinic acid) exhibit a repeating structure based on soft and hard segments, derived from ricinoleic and 4-hydroxycinnamic acids, respectively. To achieve this alternating sequence, copolymers were synthesised by the self-condensation of hetero-dimeric monomers derived by the pre-coupling of methyl ricinolate and 4-hydroxycinnamic acid. The glass transition temperature (Tg) was observed to increase as the number of methoxy groups on the main chain increased; the Tg values of poly(coumaric acid-alt-ricinoleic acid), poly(ferulic acid-alt-ricinoleic acid), and poly(sinapinic acid-alt-ricinoleic acid) are −15 °C, −4 °C, and 24 °C respectively, 58 °C, 69 °C, and 97 °C higher than that of poly(ricinoleic acid). The polymers were processed into highly flexible, visually transparent films. Among them, poly(sinapinic acid-alt-ricinoleic acid) bearing two methoxy groups on each cinnamoyl unit, is mechanically the strongest polymer, with an elastic modulus of 126.5 MPa and a tensile strength at break of 15.47 MPa.

Graphical abstract: Improving thermal and mechanical properties of biomass-based polymers using structurally ordered polyesters from ricinoleic acid and 4-hydroxycinnamic acids

Supplementary files

Article information

Article type
Paper
Submitted
29 Jun 2020
Accepted
13 Sep 2020
First published
12 Oct 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 36562-36570

Improving thermal and mechanical properties of biomass-based polymers using structurally ordered polyesters from ricinoleic acid and 4-hydroxycinnamic acids

A. Yamamoto, K. Nemoto, M. Yoshida, Y. Tominaga, Y. Imai, S. Ata, Y. Takenaka, H. Abe and K. Sato, RSC Adv., 2020, 10, 36562 DOI: 10.1039/D0RA05671E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements