Issue 59, 2020, Issue in Progress

Growth process control produces high-crystallinity and complete-reaction perovskite solar cells

Abstract

The growth process control (GPC) method, a new method which is better than thermal evaporation, for producing high-crystallinity perovskites by controlling the growth time in a low vacuum, is explored in this work. Inspired by evaporation technology, GPC is an effective method for modifying traditional thermal evaporation and for controlling the crystal growth of perovskite CH3NH3I3. Compared to fabrication with the process of co-evaporation, the MAPbI3 perovskite solar cell fabricated by GPC has high uniformity and film coverage. All of the manufacturing is carried out outside of the glove box. It provides an easy and effective way for perovskite fabrication for industrialization. Here, after using GPC to form perovskite solar cells, the residual methylammonium iodide (MAI) and PbI2 which is produced by the evaporation process can react completely, observed by time of flight secondary ion mass spectrometry (TOF-SIMS). Finally, formed by GPC, perovskite solar cells exhibit high performance and fewer crystal defects. The electron and hole recombination is greatly reduced. Through the GPC method, the Jsc and the filling factor are improved with the increase of time after the fabrication. The power conversion efficiency was increased from 11.12% to 16.4%.

Graphical abstract: Growth process control produces high-crystallinity and complete-reaction perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
02 Jul 2020
Accepted
16 Sep 2020
First published
30 Sep 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 35898-35905

Growth process control produces high-crystallinity and complete-reaction perovskite solar cells

C. Kuan, P. Kuo, C. Hou, J. Shyue and C. Lin, RSC Adv., 2020, 10, 35898 DOI: 10.1039/D0RA05772J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements