Issue 57, 2020, Issue in Progress

Water discrimination based on the kinetic variations of AgNP spectrum

Abstract

The assessment of water quality and its classification have considerable importance on public health. This requires monitoring of a wide range of physical, chemical and biological parameters. Here, an array of sensors composed of absorbances in different wavelengths in a kinetic process was used for classification. The data were obtained in the kinetic absorbance variations of silver nanoparticles (AgNPs) in the presence of different mineral waters. Spectral variations with time for each water sample were vectorized, and the matrix composed of these vectors was analyzed using principal component analysis (PCA) and hierarchical cluster analysis (HCA) as unsupervised clustering methods. The distinct clusters of nine different water samples were obtained using PCA and clustering by HCA resulted in an error rate of only 14.8%, which corresponds to misclassification of 4 water samples out of 27. The ability of the method for the discrimination of water samples using AgNP as the sole reagent can be attributed to the high dimensionality of data and the influence of the chemical environment in each water sample on the absorbance variations of AgNPs.

Graphical abstract: Water discrimination based on the kinetic variations of AgNP spectrum

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2020
Accepted
31 Aug 2020
First published
17 Sep 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 34459-34465

Water discrimination based on the kinetic variations of AgNP spectrum

M. Shariati-Rad and Y. Mozaffari, RSC Adv., 2020, 10, 34459 DOI: 10.1039/D0RA06000C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements