Issue 62, 2020

Degradation of norfloxacin by copper-doped Bi2WO6-induced sulfate radical-based visible light-Fenton reaction

Abstract

In this work, a series of Cu(II)-doped Bi2WO6 nanomaterials with good photo-response properties were facile synthesized and used to obtain efficient peroxymonosulfate (PMS) activation activity for norfloxacin (NOF) removal under visible LED light irradiation. It was found that Cu–Bi2WO6 presents superior catalytic performance for NOF degradation in comparison with pristine Bi2WO6, attributed to the partial substitution of Bi3+ by Cu ions. Moreover, the effects of experimental conditions were carefully investigated, including PMS concentration, catalyst dosage and initial pH, and the experimental data fitted well with the pseudo-first-order model. Experimental results implied that there was a synergic effect of visible LED light energy and the sulfate radical (SR)-Fenton reaction. Additionally, the 5Cu–Bi2WO6 nanomaterial presented the best degradation efficiency of 89.27% and exhibited high NOF degradation in 5 cycles with limited Cu leaching. Furthermore, EPR and radical quenching experiments were performed to identify the reactive oxygen species presented in the SR-photo-Fenton reaction. Finally, the major degradation intermediates of NOF were detected, and a possible degradation pathway was given. Thus, a mechanism of the significant photocatalytic activity enhancement by copper doping of the Bi2WO6 catalyst was proposed.

Graphical abstract: Degradation of norfloxacin by copper-doped Bi2WO6-induced sulfate radical-based visible light-Fenton reaction

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2020
Accepted
29 Sep 2020
First published
15 Oct 2020
This article is Open Access
Creative Commons BY license

RSC Adv., 2020,10, 38024-38032

Degradation of norfloxacin by copper-doped Bi2WO6-induced sulfate radical-based visible light-Fenton reaction

X. Zhong, W. Wu, H. Jie, W. Tang, D. Chen, T. Ruan and H. Bai, RSC Adv., 2020, 10, 38024 DOI: 10.1039/D0RA07378D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements