Issue 63, 2020, Issue in Progress

Electronucleation mechanism of copper in wastewater by controlled electrodeposition analysis

Abstract

In order to improve the efficiency of copper deposition in wastewater containing the surfactant polyvinylpyrrolidone (PVP) and reveal the mechanism of copper crystals, a controlled electrodeposition process was developed using a low-cost stainless steel cathode and investigated using chronoamperometry (CA), electrochemical impedance spectroscopy (EIS) and infrared spectroscopy (IR). The theoretical analysis was verified by fitting them to experimental curves and calculating the kinetic parameters of the deposition process. The experimental results showed that Cu(PVP)2 was formed by the reaction between the C[double bond, length as m-dash]O bond of PVP and Cu2+. When powdered, reduction of Cu2+ in the Cu(PVP)2 structure was promoted, a positively-charged PVP-coating layer was formed on the surface of the copper crystal nuclei to inhibit the growth of the copper powder. At a potential of −0.2 V, the electrodeposition crystallization curve of copper changed from progressive nucleation to instantaneous nucleation. The kinetic parameters of the deposition process were calculated by fitting the experimental curves to verify the correctness of the theoretical analysis. The EIS tests showed that removing the powder reduced the resistance of the organic solvent (PVP) film on the electrode surface and the charge transfer resistance during copper deposition. According to particle size analysis, removing the powder could reduce the growth energy of copper powder on the electrode surface, increase the area of the active part on the electrode surface, increase the current efficiency of copper powder to 84.2%, and control dust. The size of copper powder reached up to around 900 nm.

Graphical abstract: Electronucleation mechanism of copper in wastewater by controlled electrodeposition analysis

Article information

Article type
Paper
Submitted
28 Aug 2020
Accepted
01 Oct 2020
First published
21 Oct 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 38683-38694

Electronucleation mechanism of copper in wastewater by controlled electrodeposition analysis

S. Diao, Y. Wang and H. Jin, RSC Adv., 2020, 10, 38683 DOI: 10.1039/D0RA07380F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements