Issue 73, 2020, Issue in Progress

Improved photoelectrode performance of chemical solution-derived Bi2O3 crystals via manipulation of crystal characterization

Abstract

Three-dimensional Bi2O3 crystals with various morphologies were successfully synthesized on F-doped tin oxide substrates with and without homoseed layers via chemical bath deposition (CBD) routes. The structural analysis reveals that control of the pH value of the reaction solution resulted in as-grown Bi2O3 crystals with nanosheet and plate morphologies. A lower pH value of the reaction solution engendered formation of a porous sheet-like morphology of Bi2O3; by contrast, a higher pH value of the reaction solution is favorable for formation of solid Bi2O3 plates on the substrates. Furthermore, a sputter coated Bi2O3 seed layer with dual α- and β-Bi2O3 phases plays an important role in the CBD-derived Bi2O3 crystallographic structures. The Bi2O3 crystals formed via CBD processes without a sputter coated Bi2O3 homoseed layer demonstrated a high purity in β-Bi2O3 phase; those grown with a homoseed layer exhibited a dual α/β phase. The photoactive performance results show that construction of an α/β-Bi2O3 homojunction in the CBD-derived Bi2O3 crystals substantially improved their photoactive performance. Comparatively, the porous Bi2O3 nanosheets with a dual α/β-Bi2O3 phase demonstrated the highest photoactive performance among various Bi2O3 crystals in this study. The superior photoactivity of the porous α/β-Bi2O3 nanosheets herein is attributed to their high light absorption capacity and photoinduced charge separation efficiency. The experimental results in this study provide a promising approach to design CBD-derived Bi2O3 crystals with desirable photoelectric conversion functions via facile morphology control and seed layer crystal engineering.

Graphical abstract: Improved photoelectrode performance of chemical solution-derived Bi2O3 crystals via manipulation of crystal characterization

Article information

Article type
Paper
Submitted
14 Oct 2020
Accepted
07 Dec 2020
First published
21 Dec 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 45042-45058

Improved photoelectrode performance of chemical solution-derived Bi2O3 crystals via manipulation of crystal characterization

Y. Liang and Y. Chou, RSC Adv., 2020, 10, 45042 DOI: 10.1039/D0RA08746G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements