Issue 7, 2020

Bioinspired chemistry at MOF secondary building units

Abstract

The secondary building units (SBUs) in metal–organic frameworks (MOFs) support metal ions in well-defined and site-isolated coordination environments with ligand fields similar to those found in metalloenzymes. This burgeoning class of materials has accordingly been recognized as an attractive platform for metalloenzyme active site mimicry and biomimetic catalysis. Early progress in this area was slowed by challenges such as a limited range of hydrolytic stability and a relatively poor diversity of redox-active metals that could be incorporated into SBUs. However, recent progress with water-stable MOFs and the development of more sophisticated synthetic routes such as postsynthetic cation exchange have largely addressed these challenges. MOF SBUs are being leveraged to interrogate traditionally unstable intermediates and catalytic processes involving small gaseous molecules. This perspective describes recent advances in the use of metal centers within SBUs for biomimetic chemistry and discusses key future developments in this area.

Graphical abstract: Bioinspired chemistry at MOF secondary building units

Article information

Article type
Perspective
Submitted
18 Dec 2019
Accepted
23 Jan 2020
First published
23 Jan 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 1728-1737

Bioinspired chemistry at MOF secondary building units

J. R. Bour, A. M. Wright, X. He and M. Dincă, Chem. Sci., 2020, 11, 1728 DOI: 10.1039/C9SC06418D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements